Monday, 25 November 2024

Combine ResNet-50 embeddings with metadata for improved accuracy in your image search system

Step 1: Install Required Libraries

Ensure you have the necessary libraries:

  • Install Milvus and its Python SDK pymilvus.
  • Install libraries for handling images and metadata (e.g., TensorFlow, Scikit-learn).
pip install pymilvus tensorflow scikit-learn

Step 2: Set Up Milvus

  1. Start Milvus:

    • Install and run Milvus locally or use a hosted service like Zilliz Cloud.
    docker-compose up -d
  2. Connect to Milvus:

    • Use the Python SDK to connect to the Milvus server.
    from pymilvus import connections # Connect to Milvus connections.connect("default", host="127.0.0.1", port="19530")
  3. Create a Collection:

    • Design a schema to store image embeddings and metadata.
    from pymilvus import CollectionSchema, FieldSchema, DataType, Collection # Define schema fields = [ FieldSchema(name="image_embedding", dtype=DataType.FLOAT_VECTOR, dim=2048), # ResNet-50 embeddings FieldSchema(name="category", dtype=DataType.VARCHAR, max_length=50), # Categorical metadata FieldSchema(name="brand", dtype=DataType.VARCHAR, max_length=50), # Categorical metadata FieldSchema(name="price", dtype=DataType.FLOAT), # Numerical metadata ] schema = CollectionSchema(fields, description="Image search collection") # Create collection collection = Collection("ecommerce_image_search", schema)

Step 3: Index Data

  1. Extract and Encode Features:

    • Use ResNet-50 to extract embeddings and encode metadata (as explained in earlier steps).
  2. Insert Data into Milvus:

    • Combine embeddings with metadata and add them to Milvus.
    # Example data image_embedding = [0.1, 0.2, ..., 0.9] # Example 2048-d embedding category = "shoes" brand = "Nike" price = 99.99 # Insert data into Milvus data = [[image_embedding], [category], [brand], [price]] collection.insert(data) print("Data inserted successfully")
  3. Create Index for Faster Search:

    • Create a vector index for the image_embedding field to optimize similarity search.
    index_params = {"index_type": "IVF_FLAT", "metric_type": "L2", "params": {"nlist": 128}} collection.create_index(field_name="image_embedding", index_params=index_params) print("Index created successfully")

Step 4: User Input (Query)

  1. Image Upload:

    • Extract ResNet-50 embedding from the uploaded image.
    query_image_embedding = extract_features("uploaded_image.jpg")
  2. Metadata Filters:

    • Get metadata selections (e.g., category: "shoes", brand: "Nike").
    • Convert filters to SQL-like queries for Milvus.

Step 5: Perform Hybrid Search

  1. Combine Image and Metadata Search:

    • Milvus supports hybrid searches using metadata filters.
    # Define a query search_params = {"metric_type": "L2", "params": {"nprobe": 10}} filters = "category == 'shoes' && brand == 'Nike'" # User-selected metadata filters # Perform search results = collection.search( data=[query_image_embedding], # Input vector anns_field="image_embedding", # Vector field name param=search_params, limit=10, # Number of results expr=filters # Metadata filter ) # Display results for hit in results[0]: print(f"ID: {hit.id}, Score: {hit.score}, Metadata: {hit.entity}")

Step 6: Return Results

  1. Retrieve Matching Products:

    • Use the IDs of the search results to fetch additional product details (e.g., names, images) from your database.
  2. Display Results:

    • Show visually similar products filtered by the selected metadata on the front end.

Step 7: Refine and Optimize

  1. Weighting Embeddings and Metadata:

    • If image features are more critical, assign higher weight to embeddings.
    combined_embedding = 0.8 * image_embedding + 0.2 * metadata_vector
  2. Tune Milvus Parameters:

    • Experiment with nlist and nprobe in the index parameters for better speed and accuracy.
  3. Monitor Performance:

    • Regularly update indexes and handle metadata updates efficiently.

Advantages of Using Milvus

  • Efficient handling of large-scale image and metadata data.
  • Native support for hybrid searches (combining vectors and metadata).
  • Scalable and integrates well with machine learning workflows.

Would you like more details on any specific step or a complete code example?

Thank you

No comments:

Post a Comment

Golang Advanced Interview Q&A